
A simple method of solving the spectral problem L*~ 0 = 0, ~0 = 0 (z = 0, -H) is pre- 
sented in [3]. The Brunt-V~isil~ frequency in this method is approximated by a piecewise- 
constant function, i.e., the whole interval of values I-H, 0] is divided into layers, in 
each of which the solution is written down in analytic form and the integration of (8) is 
reduced to converting the function and its derivative or the impedance Z = ~0/~z from one 
horizon to another over the whole layer. Then the equation for the eigenvalues has the 
form Z~ - Z~ H = 0, where Z~ H is the impedance converted from the bottom to the J-th horizon, 
while Z~ is the impedance converted from the surface to the same horizon. The number of the 
eigennumber is determined by the number of zeros at the appropriate eigenfunction. Inte- 
gration of (9) is performed by an analogous method, the solution in each layer is expressed 
in terms of the solution of the homogeneous equation and the right side of (9). A program 
is written on the basis of this method and the "exact" and approximate methods are compared. 
It is shown that for real (practically for all stable) flows the relative error in deter- 
mining the coordinates of the leading fronts by using the perturbation method for the first 
modes does not exceed 10% (this is totally adequate for the processing of full-scale data). 

As an illustration of the influence of shear flows on internal waves, the leading wave 
fronts of the first and second internal wave modes are represented in Fig. 2 for a medium 
with a two-dimensional shear flow (solid curve). The distributions of the Brunt-V~is~l~ 
frequency and the flow velocity components were taken from results of measurements and are 
presented in Figs. 3 and 4. Corresponding fronts for media without flows are shown by 
dashed lines for comparison. 

It is seen from Figs. i and 2 that the presence of flows results in a substantial change 
in the wave front location, and therefore, of the whole internal wave field also. These 
changes can be computed by using the presented sufficiently accurate and simple algorithm. 
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DISPLACING OIL WITH HOT WATER AND STEAM 

A. F. Zazovskii UDC 532.546+622.276.65 

Exact solutions are derived via the approach of [i-3] for frontal oil displacement by 
steam or steam-water mixtures [4] in the large-scale approximation, i.e., where we neglect 
capillary, diffusion, and nonequilibrium effects as well as thermal conduction in the stratum 
in the displacement direction. It is assumed that the water and steam when present together 
in the porous medium have equal mobilities. Then three-phase flows, if they occur, amount to 
two-phase ones, with the aqueous phase a mixture of water and steam. The thermal-wave struc- 
ture is determined by the nonlinear temperature dependence for the specific heat content in 
the generalized water phase, which is independent of the saturation distribution. For ex- 
ample, if saturated steam is pumped into the stratum, the temperature alters stepwise, with 
the step corresponding to the steam condensing to cold water. In superheated-steam displace- 
ment, there is a two-stage temperature distribution, with a slow front in which the steam 
cools to the transition point and a more rapid condensation one. The relation between the 
displacing capacity and the specific heat content is of turning-point type: it is maximal for 
hot water and decreases on going to cold water and steam. Therefore, one cannot construct 
the solution in the large-scale approximation without considering the internal step struc- 
ture corresponding to the condensation front, where the evolutionary conditions are not 
obeyed. The condition for a continuous internal structure is related to the diffuseness in 
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the thermal front arising from conduction, and this gives additional conditions that elimi- 
nate the arbitrary element in constructing the saturation distribution. This simulation meth- 
od, although clearly approximate, reproduces the characteristic features of steam treatment. 

I. Formulation. The following system describes the one-dimensional displacement of 
oil by steam when one neglects hydrocarbon extraction into the gas phase: 

vi = --k(/J~i)Op/Ox (i = i ,  2, 3); ( 1 . 1 )  

o o 
m ~i- (s~p~ + sap3) + - ~  (p~Vl + esva) = 0,: 

3 (1.2) 

m W (s2P2) + ~ (p~v2) = 0, m ~i- 
i = l  

o 
Q = ~ (qo + qr) + P,  

(1.3) 0T 
q o = ~ P i h i v ~ ,  qT=- -%-~-x , :  P = a ( T - - T o ) ;  

3 

~ , s ~ = l ,  P l = c o n s t ,  P 2 = c o n s t ,  P a = P / R T ,  
~=i (I .4) 

Ui = h~ -- p/p~, plhl = ClT , p2h2 = csT , plh3 =clT q- u~ 

1~ =/i(s~, s3, T) (i = t ,  2, 3), ~j = ~j(T) (] = t,~ 2), ~3 = 9a(T, p). 

Here  x i s  a c o o r d i n a t e ,  t t i m e ,  m p o r o s i t y ,  k p e r m e a b i l i t y ,  p p r e s s u r e ,  T t e m p e r a t u r e ,  s i 
s a t u r a t i o n ,  f i  r e l a t i v e  p e r m e a b i l i t y ,  Ui v i s c o s i t y ,  Pi  d e n s i t y ,  v i i n f i l t r a t i o n  r a t e ,  h i and 
U i t h e  s p e c i f i c  h e a t  c o n t e n t  and i n t e r n a l  e n e r g y  o f  p h a s e  i ,  w i t h  s u b s c r i p t  i = 1 r e f e r r i n g  
t o  w a t e r ,  i = 2 t o  o i l ,  and i = 3 t o  s t e a m ,  Q h e a t - t r a n s f e r  r a t e ,  R s p e c i f i c  g a s  c o n s t a n t  
f o r  s t e a m ,  x l a t e n t  h e a t  o f  e v a p o r a t i o n ,  X s t r a t u m  t h e r m a l  c o n d u c t i v i t y ,  c 1, c 2, and c 4 b u l k  
s p e c i f i c  h e a t s  o f  w a t e r ,  o i l ,  and r o c k ,  a h e a t - t r a n s f e r  c o e f f i c i e n t  p e r  u n i t  s t r a t u m  v o l u m e ,  
and T o s u r r o u n d i n g  r o c k  t e m p e r a t u r e .  

E q u a t i o n s  ( 1 . 1 )  e x p r e s s  D ' h r c y ' s  law,  w i t h  ( 1 . 2 )  r e p r e s e n t i n g  t h e  b a l a n c e s  f o r  w a t e r  and 
s t e a m ,  o i l ,  and t h e  amount  o f  h e a t  i n  t h e  f l o w .  The h e a t - i n f l u x  e q u a t i o n  ( 1 . 3 )  i n c o r p o r a t e s  
t h e  h e a t  f l u x e s  due t o  c o n v e c t i o n  qc and c o n d u c t i o n  qT, as  w e l l  a s  t h e  h e a t - t r a n s f e r  r a t e  
b e t w e e n  t h e  s t r a t u m  and t h e  s u r r o u n d i n g  r o c k s  P in  a c c o r d a n c e  w i t h  N e w t o n ' s  law.  E q u a t i o n s  
( 1 . 4 )  i n d i c a t e  t h a t  t h e r m a l  e x p a n s i o n  i n  t h e  l i q u i d s  i s  n e g l e c t e d ,  w h i l e  t h e  s t e a m  i s  c o n -  
s i d e r e d  a s  an i d e a l  g a s .  He re  X, u , and T O a r e  t a k e n  a s  c o n s t a n t .  

Fo r  s i m p l i c i t y ,  we n e g l e c t  t h e  d i f f e r e n c e  b e t w e e n  t h e  i n t e r n a l  e n e r g y  U i and t h e  e n -  
t h a l p y  h i f o r  e a c h  p h a s e  on t h e  b a s i s  t h a t  U i = h i ( i  = 1, 2,  3 ) .  T h i s  i s  j u s t i f i e d  f o r  t h e  
l i q u i d  p h a s e s  ( i  = 1, 2) b e c a u s e  h i = (h  i - U i ) / h  i ~ 1. Fo r  s t e a m ,  A3 = 0 . 2 - 0 , 3 ,  b u t  as  t h e  
d e n s i t y  o f  s t e a m  i s  low,  t h e  c o r r e s p o n d i n g  c o n t r i b u t i o n  t o  t h e  h e a t  c o n t e n t  f o r  a vo lume  
e l e m e n t  in  t h e  p o r o u s  medium i s  v e r y  s m a l l .  

S y s t e m  ( 1 . 1 ) - ( 1 . 4 )  i s  c l o s e d  e i t h e r  by t h e  c o n d i t i o n s  f o r  w a t e r  and s t e a m  e q u i l i b r i u m  
o r  by t h e  e q u a t i o n s  f o r  t h e  e v a p o r a t i o n  and c o n d e n s a t i o n  k i n e t i c s .  I n  t h e  f i r s t  c a s e ,  we 
h a v e  a s  f o l l o w s ,  whe re  T , ( p )  i s  t h e  p h a s e - t r a n s i t i o n  t e m p e r a t u r e :  

s 8 = 0  ( T < T . ) ~  s 1 = 0  ( T > T , ) ,  0 ~ . s  1 + s 3 < ~ t  ( T = T , ) ,  ( 1 . 5 )  

I n  t h e  s e c o n d  c a s e ,  t h e  mass  p h a s e - t r a n s i t i o n  r a t e  ~ i s  u s u a l l y  t a k e n  a s  p r o p o r t i o n a l  t o  t h e  
d i f f e r e n c e  b e t w e e n  t h e  s a t u r a t i o n  p r e s s u r e  p~ (T)  and  t h e  p r e s s u r e  p [ 5 ] .  We t a k e  ~ as  t h e  
r a t e  o f  c h a n g e  i n  t h e  w a t e r  mass  in  u n i t  vo lume  o f  t h e  p o r o u s  medium t o  g e t  

0 
0-? (mplsl) = ~ (T, s 1, ss) = ~ (s 1, s3, T) [p .  (T) - -  p], 

~ > 0  ( s ~ > 0 ,  T < ~ T .  or s l > 0 ,  T>~T.) ,  ( 1 . 6 )  

=0 (s I=0, T>T, or ~=0, T<T,). 

Here m(s I, s a, T) is a known function, while the conditions as equalities and inequalities 
incorporate the fact that the phase transition rate becomes zero for superheated steam (s~ = 
0, T > T,) and underheated liquid (s a = 0, T < T,). 

We neglect the effects from pressure change in the stratum on the phase state of the 
water and the viscosity of the steam, taking p = p,(T,) = const in (1.5) and (1.6). We elim- 
inate p from (1.2) to get 
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/ 3 \ - - 1  

f '  /Y/--~J / ( i = l ,  2, 3). ( 1 . 7 )  

Frontal displacement corresponds to the solution to the above system with the initial 
and boundary conditions 

81 = $0' 83 = 0, T = T o < T  , (t = 0, x > 0 ) ,  ( 1 . 8 )  
s z=s~,  ~ = s ~  T = T ~  U = U  ~ ( t > 0 ,  x = 0 ) , :  

where s 0 is the initial water level in the stratum, T O and U ~ are the temperature and infil- 
tration rate for the pumped mixture, and s~ and s~ are the volume concentrations of water 
and steam in it. When superheated steam is used, ~ = 0~=I~ T~ while for saturated 

e TO - ~ T,,, steam, s~----0, s~ =I, T** and for a mixture of hot water and steam, s~+~ = ~, T O 
while for hot water alone, s~ = 1, s~ = 0, T~ 

2. Two-Phase Large-Scale Approximation. We introduce the volume steam concentration 
in the fictitious water phase c, while the viscosity and relative permeability for the 
aqueous phase are defined by ~----(1--c)~znUc~a and [~ = (1--c)/z-~c/a, with the saturation and 
the fraction in the flow denoted correspondingly by s and F = F(s, T, c). Then 

s z = ( t - - c ) s , ~ = l - - s , ~ = c s , F l = ( t - - c ) f , f ~ =  l - - f ~  ( 2 . 1 )  
F~ = cF 

and (1.2) and (1.6) after conversion to dimensionless variables and use of (1.4), (1.7), and 
(2.1) become 

a-(Ks)+ ~ ( A K F ) = O ,  ~ ( l - - s ) W ~ t A ( l - - F ) ] = 0 ~  

~T ( 2 . 2 )  
[T'(As+ b)] + o --~ ~ [AT' (AF + h)] § a'T' = s--~T; 

(r ,  , ,  s) = [p;  ( r ' ) -  t1,: ~--- [s ( i  - -  c)]  = "7- - 
f 

p,(T ' , )=t ,  co'>0 (c>0, o, c < t ,  
t 

,o'=o r ' > r ,  r ' < r , ) ;  
(2.3) 

r'  r : -  ' X=L, x=~- K, A= = 

~' U~ a' -~ aL e~ --1.- c4/ra 

h=cz:~c2' • = ~ '  (~ ~"!o),' D ( T ' ) = c z - - c  2 -- +-T~-B~ 

Be _ To 
B ( T ' ) = T , + O ,  B 0 =  P Bp--~'  0 -- ~ - ,  ~ ,  = ~ (i/2, 1/2,: T,),: 

K(c, T) = i -- (t --  B)c, A(c, T) = i -- Dc, AT = T ~  
with K -I the thermal-expansion coefficient for the aqueous phase, which incorporates the 
evaporation, 
sion. 

condensation, and steam expansion, and L is the characteristic stratum dimen- 

In what follows, the primes to the dimensionless variables are omitted and no misunder- 
standing can arise. Then (1.8) becomes 

s = ~ ,  c = 0,  T = 0 (~ = 0, X >  0) ,  ( 2 . 5 )  

s = i , c = c  o , T = i , A = i ( ~ > 0 ,  X = 0 ) .  

E q u a t i o n s  ( 2 . 2 )  and ( 2 . 3 )  c o n t a i n  two s m a l l  p a r a m e t e r s :  c and ~, where  r  i s  t h e  P e c l e t  
number, which characterizes the ratio of the convective heat flux to the conductive one, 
while ~ is the ratio of the characteristic evaporation (condensation) time to the character- 
istic displacement time mL/U ~ We take r = v = 0 to get a formulation corresponding to the 
large-scale approximation. Here ~ ~ 0, and (2.3) becomes the phase-equilibrium conditions 

c = O ( T < T . ) ,  c = l  ( T > T . ) ,  O ~ c ~ t  (T=T . )~  ( 2 . 6 )  

and the flow-distribution function becomes a function of two variables: s and the dimension- 
less specific heat content of the water phase H(T, c): 
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F = F (s, H), H (T, c) --  r (A + h) _ 5 iT (i --  c) + (r  + ~) B (r) ,] 
K (Cl--C2)[t--c.-]-B(T)c] " 

(2.7) 

Experiment [6] indicates that the H dependence of F is not monotone for heavy viscous 
oils#: the proportion of the aqueous phase in the flow decreaseswhen the water is heated to 
the transition temperature mainly on account of increase in the viscosity ratio for the water 
and oil, and it increases sharply when the water evaporates because of the high steam mobil- 
ity. Then FH~0 for T < T, and F~0 for T>/T,. Figure 1 shows typical F distributions 
for oil being displaced by steam, hot water, and cold water (lines 1-3). The calculations 
have been based on (1.7) for the relative phase permeabilities from [6] and displacement 
conditions close to natural ones: p = 5 MPa, T o = 20~ T, = 265~ ~x(T0) = 1MPa'sec, ~i • 
(T,) = 0.I MPa'sec, ~3(T,) ffi 0.01MPa'sec, ~2(T0) = 200 MPa'sec, and ~2(T,) = 4.4 MPa'sec. 
The important point however here is not so much the exact forms of curves 1-3 as the dispo- 
sition of them. The sense of change in H is shown by the arrows along the line OLPN. H(T, 
c) is important in all the subsequent arguments. The definition of (2.7) and the assumption 
that the specific heats and the latent heat of evaporation are constant mean that it takes 
the form of the piecewise-linear line OLPN in the (T, H) plane (Fig. 2). The segments OL 
and PN are parallel, while the vertical segment LP corresponds to the change in steam concen- 
tration c in the aqueous phase from 0 to i. 

With c = 0 and T < T,, (2.4) gives K = A = i, and system (2.2) and (2.6) coincides 
with that obtained in [i] for nonisothermal oil displacement by water. With c = I and T > T, 
we have K = B(T), A = 1 - D(T), and (2.2), (2.6) describe oil displaced by superheated steam. 
Finally, with 0~c~I, T = T,, the K and A are linear functions of c. It is in this range 
in c and T that the actual three-phase flow is represented as a fictitious two-phase one. 

In the large-scale approximation, we have discontinuous distributions for s, c, T, and 
the dimensionless flow rate A, which is due to the equation system being hyperbolic. The 
discontinuous solution is not uniquely determined by the initial and boundary conditions. 
We construct it as the limit to a sequence of continuous solutions to the full system as 
obtained for r ~ + 0. Then the steps will correspond to narrow transition zones, where 
the variables change rapidly in response to capillary and nonequilibrium effects as well as 
thermal conduction. The conditions for such zones or internal structure are also called the 
permissibility or stability conditions, and they distinguish a unique solution corresponding 
to the correct physical asymptote out of the set of possible ones [7]. The capillary effects 
are neglected in the initial equations because the structure of the saturation steps is known 
for T = const and so are the corresponding stability conditions [8]. 

3. Thermal-Wave Structure. We consider the internal structure in the temperature dis- 
continuity corresponding to the steam condensation front. Let V be the step speed, while 
s • T • c • A • are the values of the variables after the step (minus) and ahead of it (plus). 
We transfer to a coordinate system linked to the step, ~ = (X--VT)/e, ~' = ~]8, and let g and 

tend to zero to get a stationary internal solution that satisfies the linkage conditions 
to the external solution 

(3.1) 
-- V--~ [T (As + b)] + ~ [AT (AF + h)] = J r .  

d~Z , 

d '~  e f l (T ,  e, ~;  ( 3 . 2 )  - -  V [s (i - c)]  = " V  

s=s • T • • =A • (~ = +oo). (3.3) 

We integrate (3.1) from -~ to q and use (3.3) and assume that dT(-~)/dq = 0 to get 

--V(Ks -- K - ; )  + AKF -- A-K-F-  = O, 

V~ - - s  + A( l  - - F )  - -  A - ( i  - -  F - )  = O, 
(3.4) 

--VtT(As + b) -- T - (A-F  + b)] + AT(AF + h),-- A-T-(A-F-  
+ h) = dr/d~, 

K • =K(c  • T• A • =A(c  •177 F • =F(s  i , r  •177 

#This feature was pointed out by K. M. Fedorov, who made the constructions in Fig. I. 
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We transform the first two equations in (3.4) to 

V =  A F - A - K - F - / K  A = A - _ ( I _ K - - - K ) ( A - F - _ V s - ) ,  ( 3 . 5 )  
s - -  K-s - /K ' 

and then eliminate s, F, and A from the third, which gives 

dTIdq = (T  - -  T-){A-  [ F - K - O  + (1 - -  F-)h]  - -  V [ ~  K - ~  + 
( 3 . 6 )  

( t  - -  E ) h  + b - -  h ] } ,  ~ ( T ,  c) = [H(T, c) - -  H ( T - ,  C ) ] / ( T  - -  T - ) .  

From ( 3 . 5 )  and t h e  o b v i o u s  r e q u i r e m e n t  ( T - - T - ) d T / d q ~ O  we h a v e  t h a t  an i n t e r n a l  s t e p  s t r u c -  
t u r e  a c c o m p a n i e d  by  e v a p o r a t i o n  o r  c o n d e n s a t i o n  r e q u i r e s  o b e d i e n c e  t o  t h e  c o n d i t i o n  

A-[K-F-~  + (l - - F - ) h ]  - -  V [ K - r ~  + (l - - r ) h  + b --h] >~ 0 ( 3 . 7 )  

for all T between T- and T+; equality occurs in (3.7) only for T = T • and otherwise the tem- 
perature distribution in the transition zone is not single-valued, 

We use the conditions in the step derived by substituting s =s +, T = T +, c=~, A =A + 
and dT(--oo)/d~L =0 into (3.4) and transform (3.7) to(f-/~ --h/b)(~--~+)~O , where,+ =(H + 
--H-)/(T + --T-). As F has a specific distribution (Fig. i), F-/s- > h/b always in the solu- 
tions, so (3.'7) finally becomes 

(H - -  H - ) / ( T  - -  T - )  ~ (H + - -  H - ) / ( T  § - -  T - ) .  ( 3 . 8 )  

One can  g i v e  an o b v i o u s  g r a p h i c a l  i n t e r p r e t a t i o n  in  t h e  (T ,  H) p l a n e  f o r  ( 3 . 8 ) :  i f  t h e  s t e p  
i s  t o  be  p e r m i s s i b l e ,  t h e  s t r a i g h t - l i n e  s e g m e n t  j o i n i n g  t h e  p o i n t s  (T •  H •  on t h e  H(T) c u r v e  
s h o u l d  n o t  h a v e  any  o t h e r  p o i n t s  o f  i n t e r s e c t i o n  w i t h  t h a t  c u r v e ,  and i t  s h o u l d  run  a b o v e  
H(T) f o r  T- > T + and be low i t  f o r  T- < T +. 

The p e r m i s s i b l e  s t e p s  a r e  t h u s  t h o s e  c o r r e s p o n d i n g  t o  s a t u r a t e d  s t e a m  c o n d e n s a t i o n ,  
i . e . ,  f o r  T - =  T , ,  c -  > 0,  T + < T~, and c + = 0. I n  t h e  (T,  H) p l a n e ,  t h e y  c o r r e s p o n d  t o  
t r a n s i t i o n s  f r o m  p o i n t s  on LP t o  p o i n t  O (PO and MO in  F i g .  2 ) .  The s u p e r h e a t e d - s t e a m  con -  
d e n s a t i o n  f r o n t  (T-  > T ,  > T +) s p l i t s  up i n t o  two s t e p s :  a s low one c o r r e s p o n d i n g  t o  t h e  
s t e a m  c o o l i n g  t o  t h e  t r a n s i t i o n  p o i n t  and a f a s t  one c o r r e s p o n d i n g  t o  s a t u r a t e d  s t e a m  con -  
d e n s i n g  t o  c o l d  w a t e r .  As s e g m e n t  NP o f  t h e  H(T) c u r v e  i s  l i n e a r  ( F i g .  2 ) ,  t h e  s low s t e p  i s  
a c o n t a c t  d i s c o n t i n u i t y ,  so  t h e  c h a r a c t e r i s t i c  s c a l e  o f  t h e  t r a n s i t i o n  zone  i n c r e a s e s  as  ~ 1 / ~  
The t w o - f r o n t  t h e r m a l - w a v e  s t r u c t u r e  i s  t h e  (T ,  H) p l a n e  c o r r e s p o n d s  t o  t h e  k i n k e d  l i n e  NPO. 

~ )  c a u s e s  - + e v a p o r a -  S i m i l a r l y ,  one f i n d s  t h a t  pumping w a t e r  i n t o  a h o t  s t r a t u m  (T < T , <  
t i o n  f r o n t  t o  c o i n c i d e  w i t h  t h e  s t e p  in  t e m p e r a t u r e  f r o m  T- = T ,  t o  T ( t r a n s i t i o n s  LN and 
MN in  F i g .  2 ) .  T h e r e f o r e ,  pumping c o l d  w a t e r  i n t o  t h e  s t r a t u m  (T-  < T , )  r e s u l t s  i n  a s l o w e r  
w a t e r - h e a t i n g  f r o n t  b e h i n d  t h e  e v a p o r a t i o n  f r o n t ,  where  t h e  t e m p e r a t u r e  r i s e s  t o  t h e  t r a n s i -  
t i o n  p o i n t ,  a s  i l l u s t r a t e d  by c u r v e  OLN in  F i g .  2. 

T h i s  r e s u l t  a p p e a r s  t o  h a v e  been  e s t a b l i s h e d  f i r s t  i n  t h e  s i n g l e - p h a s e  a p p r o x i m a t i o n  
o f  [ 9 ] .  Our a n a l y s i s  o f  t h e  t h e r m a l - w a v e  s t r u c t u r e  i s  a n a l o g o u s  t o  t h e  s t u d y  on t h e  c o n c e n -  
t r a t i o n  s t e p  s t r u c t u r e  in  o i l  d i s p l a c e m e n t  by a s o l u t i o n  o f  an a c t i v e  m a t e r i a l  [2 ,  10, 11 ] .  
H e r e  t h e  t h e r m a l  c o n d u c t i v i t y  p l a y s  t h e  r o l e  o f  componen t  d i f f u s i o n ,  w h i l e  t h e  s p e c i f i c  h e a t  
c o n t e n t  H(T,  c )  h e r e  a c t s  as  t h e  r e c i p r o c a l  f u n c t i o n  f o r  i s o t h e r m a l  s o r p t i o n .  

I t  c an  howeve r  be  s e e n  t h a t  ( 3 . 8 )  does  n o t  c o m p l e t e l y  e l i m i n a t e  t h e  a r b i t r a r y  e l e m e n t  
in  c o n d e n s a t i o n - f r o n t  s t e p  c o n s t r u c t i o n .  The n i n e  v a r i a b l e s  a t  t h e  s t e p  s •  T •  c •  h •  and 
V a r e  d e f i n e d  by  t h r e e  i n t e g r a l - b a l a n c e  e q u a t i o n s  f o r  w a t e r ,  o i l ,  and t h e  amount  o f  h e a t  i n  
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the flow and two relations between T -+ and c • which are consequences of the phase-equilibrium 
conditions. Three further relations apply to the step on account of the characteristics of 
(2.2). The latter for T ~ T, and T ffi T, are correspondingly 

d'~ = ~1 = AFs ,  --~ + FT + I - -  F)  (bF - -  hs dT 

= - - - W  [~i- ~2 + - ~ - ( t  --F)sj,, 
( 3 . 9 )  

dX F -4- h [K --  h (1 - -  K)1-1 dT a'T 
d--i" = ~ = A - -  = s -1- b [ K  - -  h (1  - -  K ) I  - ~ "  d'~ - -  --W-" 

dX dA K'T [ A ( b F _ _ h  , dT ] 
d-'-f" = ~3 = oo, ~ = "RW s) "~Z - -  a' sT  , 

, OF , OF , dK 
F , = ~ - ,  F T = - g p ' ,  KT=-~- ' , ~  W = [ K - - h ( I - - K ) I s + b ;  

dX ds AF: dc [ AF: K ] dX F dc ~FK 
d~ = ~ = A F : '  + = ~  - -  ( t - - F )  , ~ = [ ~ = A s ,  d -7"=  " 

(3.1o) dX dA a' ( i  - -  B) (c 1 -  c2) ( t  - -  B) 
dT - -  ~a = oo, ~ = - -  T = D - -  ( i  + h) ( i  --  B) = - -  a ' T ,  uB " 

F '  oF , dK 
c = T e  , K c  = d'--~" 

Let ~ be the characteristic velocities behind the step (minus) and ahead of it (plus), 
with the step propagating with velocity V; (3.9) and (3.10) imply that the third-family char- 
acteristic, which satisfies dX/d~ = ~ > V  and is therefore called arriving at the step, in- 
troduces A-. The inequalities ~ < V < ~  for g~ are met by (3.8) (we have V = ~ for the 
temperature steps not involving phase transitions), and the corresponding characteristics 
introduce T + and T- into the step (or c-). There are thus eight relations for the nine un- 
knowns. The lacking relation is derived from the condition for an internal step structure. 

4. Internal Condensation-Front Structure. From (3.8) we have T + ffi c + ffi 0, T- = T,, 
0 < ~ ~ i. We seek the condition for a continuous solution T(q), c(q), s(q), and A(q) to 
the interior problem of (3.1) and (3.2) or in transformed form (3.2), (3.5), and (3.6), which 
has to satisfy (3.3). Strictly speaking, it is not obvious that there can be a continuous 
saturation distribution s(q) in the absence of a capillary-pressure step, and it needs a 
demonstration similar to that given in [3] for a similar treatment. In that case, one estab- 
lishes the existence of a continuous s(q) directly as a consequence of continuity in T(q) and 
c(q) together with a continuous dependence of s on T and c defined by (3.5). In [3], it is 
shown that the resulting continuous solution coincides with that obtained on passing to the 
limit by letting the capillary pressure tend to zero. 

As the range in s is limited, we put s = const for simplicity in (3.2). We also assume 
that the condensation rate fi ffi O(cn), where 0 < n < i for c ~ 0 and T < T,. These assump- 
tions have little effect on the essence of the treatment, but they allow us to identify the 
main features in the interior solution corresponding to the actual physical situation, where 
nonequilibrium effects are small by comparison with those from thermal conduction. 

To construct the interior solution, we specify s- and calculate the corresponding V from 
dT(+co)/d~=O , after which it remains to integrate (3.2) and (3.6) and then to calculate 
A(q) and s(q) from the final relations of (3.5). One establishes the general form for T(q) 
and c(q) as follows. The right side in (3.6) is zero for T = T • or q = • and by virtue 
of (3.7) it is negative for T + < T < T-, so T(q) is a monotonically decreasing function tend- 
ing asymptotically to T • for q + • The fi on the right in (3.2) is negative for T < T, = 
T- in accordance with (2.3) and becomes zero for T = T, and c ffi 0, and in the latter case as 
c n (0 < n < i), so for c ~ 0 we have dc/d~Ncn or cn+1~q - const, i.e., c(q) should become 
zero for the finite value q = q*. Figure 3, curves I and 2, shows typical T(q) and c(q). 
For ~*<~<co, the right side in (3.6) is independent of c and is integrated in quadratures; 
thenA(~)~-A+= const . For --~ <~<~* , the volume flow rate decreases from A- to A + as 
increases. 

The interior-solution existence conditions amount to the continuity ones for s(q) for 
--co<~<oo. Let s ~ = s(q*) and T ~ ffi T(q*). We substitute T = T*, c ffi 0, K = I, A ffi A + 
into the first equation in (3.5) to get that the saturation s* in the (s, G) plane, where 
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G = AF, corresponds to the upper point of intersection M between the curve G*(s) =A+F~, T*, 
0) and the straight line having slope V and passing through the point Q = (K-s-, K-F-) (Fig. 
4). Then the s(q) in the hot water and oil zone (N*<N<oo) correspond to the points of 
intersection between MN and the same straight line between the lines Go(s ) =A+F(s, 0, 0) and 
G*(s). The line G0(s) is derived from curve i in Fig. i by altering the vertical scale by 
the factor A+. It is clear that MN should not intersect G*(s), since otherwise s as a func- 
tion of T has a discontinuity at T = T*. The only possibility allowing s(T) to be contin- 
uous is that ~ is tangential to G*(s) at M. As T* is dependent on s-, the construction 
of the exterior and interior solutions is not decoupled at the principal term. Then the 
additional conditions are 

V = A+F: (s*, T*, 0) = A+F (s*, r*, 0) -- A - K - F -  ( 4 . 1 )  
s *  - -  K - s -  

This result is analogous to that established previously [3] in the displacement of oil 
by an active solution with a nonmonotone dependence of the flow distribution on the component 
concentration. In the present case, the flow distribution is not monotonically dependent on 
the aqueous-phase specific heat content (Fig. i), i.e., the best displacement conditions 
occur when hot water acts on the stratum, with the displacement completeness falling when 
steam is used because of reduced viscosity in the displacing phase, and also when cold-water 
displacement is used because of the increased oil viscosity. However, the spread in the 
thermal front due to thermal conduction and disequilibrium phase transition means that steam 
injected into the stratum always gives rise to a region where oil and hot water infiltrate 
in the displacement zone. Consequently, the performance is higher than is indicated by the 
displacement ]power of steam from curve 3 in Fig. I. The above condensation-front step con- 
struction method incorporates this, although there is no hot water and oil infiltration 
region in the displacement zone when one constructs the solution in the large-scale approxi- 
mation. 

We now estimate v/~. From (2.4) we have v/8 (U~ From [5], the ~ intro- 
duced in (1.6) is about 6.3"10 -6 kg/(m~.Pa.sec). Then the maximum ~ = up for p = i0 MPa is 
estimated as 63 kg/ma'sec. We substitute ~ = 2 kcal/m.h.~ U ~ = im/day, pz =10 S kg/m3,and 
c I - c 2 = 0.6 cal/cm 3 into the expression for v/e to get v/~ = 0.0023, so thermal conduction 
is decisive by comparison with nonequilibrium effects as regards displacement. 

The steam condenses instantaneously for v/e = 0, so the T(q) and c(q) distributions in 
the transition zone take the form shown by curves 3 and 4 in Fig. 3, which follows directly 
from (3.2) and (3.6) if one passes to the limit 9/e + 0. Then the c(q) and s(q) distribu- 
tions are discontinuous, with the discontinuities corresponding to the interior steam conden- 
sation front to give hot water at T = T,. The T* appearing in (4.1) is not known in advance; 
it coincides with the transition temperature T,, so one can construct the exterior solution 
without first defining the interior one. For v/8~0, the two characteristics in the first 
family diverge from the step line, so the step does not satisfy the evolutionary condition 
[12]. If steam completes the oil displacement (i.e., if the initial water content in the 
stratum s o is high), one gets the situation where s + should be larger than s*; then any solu- 
tion to (3.1)-(3.3) for v/e > 0 is always continuous, and instead of (4.1) one puts s + = s o 
to close the step conditions. 

5. Exterior Solution in the Absence of Heat Loss. If there is no heat exchange between 
the stratum and the surrounding rocks (a' = 0), there is a self-similar solution to (2.2)- 
(2.5) in the large-scale approximation (e = ~ = 0): 

s = s(~) ,  T =  r ( ~ ) ,  c = c(~) ,  A = A ( ~ ) ,  ~ = X/~. ( 5 . 1 )  
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Figure 5a shows a typical solution for superheated steam injection (c o = I, T, < i); the 
T($), c($), and A(~) curves are shown on different scales for greater clarity. There are 
three characteristic fronts in the displacement zone: steam cooling to the transition point-- 

= ~T, steam condensing -- ~ = ~c, and cold-water displacement--~ = ~, (~T<~c<~s). Also, 
s is constant in the infiltration zone for the superheated steam (0<~<~T) and the saturated 
steam (~T<~<~c), i.e., the oil is immobile behind the condensation front, which is a conse- 
quence of steam's low displacing power in a heated stratum and means that it is unsuitable to 
pump superheated steam into it. In fact, the displacement conditions are not thereby im- 
proved, while the volume heat content of the injected steam is reduced. When saturated steam 
is injected, the solution is similar, but there are no steps in T and A in the 0<~<~c 
zone. In a mixture of hot water and steam (0 < c o < i), the displacement zone acquires a 
region of continuous saturation change (mobile oil region) 0 ~ ~  (Fig. 5b). As the water 
concentration increases (i - cO), this region expands (~-~r and for c o + 0, the solution 
goes over to the standard one for hot water displacing the oil [i, 2]. 

Only a qualitative displacement-zone structure description is given here. The solution 
is constructed in both cases (Fig. 5a and b) by configuring the step corresponding to the 
condensation front and satisfying (4.I) along with the conservation laws. The solution is 
completed in the usual way [2] when the condensation front parameters have been determined. 

The step in the steam concentration c corresponding to the condensation front is always 
complete (c + = 0), and other steps in c at T = T, are impossible. This result applies also 
in the initial three-phase formulation. In particular, the oil displacement by steam zone 
in the absence of heat loss for c o = 1 does not contain regions of three-phase oil-water- 
steam flow. This is a further justification for using a pseudo-two-phase model. However, the 
solution is dependent on the internal condensation-front structure, so it does not follow 
that the solutions in the two models coincide. 

In [4], there is a discussion of steam displacing oil with stratal heat transfer to the 
surrounding rock. It has been shown that the solution can be constructed everywhere apart 
from the stratum-heating zone, in explicit form. In the heating zone, the solution can be 
found numerically by the characteristic method. The proposed method has advantages over 
traditional ones in the preliminary front introduction, which eliminates the numerical-inte- 
gration complexity for equations having discontinuous solutions. 

I am indebted to K. M. Fedorov for initiating this study. 
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INCREASE IN WATER-HAMMER PRESSURE IN A PIPE IN THE PRESENCE OF 

A LOCALIZED VOLUME OF GAS 

S. P. Aktershev and A. V. Fedorov UDC 532.595.2+532.595.7 

In different areas of use of piping systems, situations are often encountered whereby 
localized volumes of gas co-exist with the liquid in the pipe. The presence of the gas 
cavities may have a significant effect on the character of various transients in the pipe- 
line [i-8]. Gas cavities may compensate for pressure fluctuations [2] or, conversely, may 
increase the maximum pressure in the pipe [3, 4]. The exact role played by the cavities de- 
pends on the parameters of the system and the method of organization of the nonsteady flow. 
As is known [i], the air chamber installed in the delivery line immediately after a pump 
reduces the pressure jump which occurs when the pump is started. On the other hand, when a 
capped pipe is filled with liquid, the presence of gas may lead to a water hammer of con- 
siderable magnitude [3]. The presence of air at the end of a delivery line with a closed 
valve may also result in large pressure fluctuations when the pump is quickly turned on [4]. 

The pressure-testing of a pipeline filled with a viscous liquid and provided with an 
air chamber (Fig. i) was studied experimentally in [5] for large values of friction at the 
point of attachment of the chamber to the line. Valve A, connecting the line, under the 
pressure P0, with a tank under constant pressure Pl > P0, was quickly opened at the initial 
moment of time. The air chamber was designed to damp the attendant pressure oscillations. 
The experimental data was compared with the results of numerical calculations. It was found 
that the maximum pressures were 1.5-1.8 times higher within a certain range of volumes of 
air in the chamber than in the absence of air. The results of the numerical calculations 
were used to determine the maximum permissible diameter of chamber throat that would ensure 
damping of pressure oscillations by the chamber for a specified volume of air. 

Here we also examine the problem of the pressure-testing of a pipeline with a gas cavity. 
However, we will use small values of friction and assume that friction is concentrated in the 
initial section of the pipe (valve resistance). The effect of the volume of the gas cavity on 
the maximum pressures in the pipeline is studied both by a numerical method and within the 
framework of a simplified mathematical model proposed below. 

Formulation of the Problem. The flow of liquid in the pipe is described by hydraulic 
equations [i] which appear as follows in the dimensionless variables p = P/Pl, u = p0cu/pl, 

Here, p, u, Pc, x, t are the dimensionless pressure, velocity, and density of the liquid, the 
longitudinal coordinate, and time; D, L, c are the diameter and length of the pipe and the 
rate of propagation of perturbations in the pipe when it is filled with liquid; X is the co- 
efficient of friction against the wall. We assume that X is constant, which is valid for 
Reynolds numbers Be~>105 [9]. 
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